Answer:
1)
![f'(x)= (3)/(2√(3x-5))](https://img.qammunity.org/2021/formulas/mathematics/college/qh0c7gibxufqkkqkwik4em2gbm74ji11s0.png)
2)
![y=(3)/(4)x-(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g8bsfwvq8h9xvikcbzo31c3f5ui7xkcwgw.png)
Explanation:
So we have the function:
1)
And we want to find its derivative using the limit definition:
![\lim_(h \to 0) (f(x+h)-f(x))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/ae56qpn7c92kve5w2ro1nc2wbke6gbr43w.png)
So, let's do so:
![\lim_(h \to 0) (√(3(x+h)-5)-√(3x-5))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/isxymu5p0tnrcd0z8qzb9yfci1ynoxuzd9.png)
Simplify the first square root:
![\lim_(h \to 0) (√(3x+3h-5)-√(3x-5))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/caalavc0j0qxed2wsl1v13ij829tnu6p4b.png)
Now, let's remove the square root by multiplying by its conjugate. So:
![\lim_(h \to 0) (√(3x+3h-5)-√(3x-5))/(h)\cdot (( √(3x+3h-5)+√(3x-5) )/(√(3x+3h-5)+√(3x-5) ))](https://img.qammunity.org/2021/formulas/mathematics/college/4m3mz80awimwx08t1s516dmr2hcke1v9gi.png)
In the numerator, difference of two squares. In the denominator, multiply:
![\lim_(h \to 0) ((3x+3h-5)-(3x-5))/(h(√(3x+3h-5)+√(3x-5)))](https://img.qammunity.org/2021/formulas/mathematics/college/w5h3jev3y8rbw0sc6utcp31jj1wqutjdjv.png)
Distribute the numerator:
![\lim_(h \to 0) ((3x+3h-5)-3x+5)/(h(√(3x+3h-5)+√(3x-5)))](https://img.qammunity.org/2021/formulas/mathematics/college/tk57zf4vn74qrjofjhzejljvi5peioyrmj.png)
Simplify:
![\lim_(h \to 0) (3h)/(h(√(3x+3h-5)+√(3x-5)))](https://img.qammunity.org/2021/formulas/mathematics/college/qb4hj9srgl9vl2zzz8a8jp06nxcgfx440l.png)
Cancel out the h:
![\lim_(h \to 0) (3)/(√(3x+3h-5)+√(3x-5))](https://img.qammunity.org/2021/formulas/mathematics/college/cylhhl8thb2agb83gwetaigx14hv4hdtbl.png)
Direct substitution:
![= (3)/(√(3x+3(0)-5)+√(3x-5))](https://img.qammunity.org/2021/formulas/mathematics/college/7n8y5zkae3x38ki3sewjafahwg89xxy30l.png)
Simplify:
![= (3)/(√(3x-5)+√(3x-5))](https://img.qammunity.org/2021/formulas/mathematics/college/mue7hmemy5kfd75ikcz6vzqsj2sxn29zgw.png)
Combine like terms:
![= (3)/(2√(3x-5))](https://img.qammunity.org/2021/formulas/mathematics/college/t46mxjtivgdknyupracdaewqqv54jbmjo3.png)
Therefore:
![f'(x)= (3)/(2√(3x-5))](https://img.qammunity.org/2021/formulas/mathematics/college/qh0c7gibxufqkkqkwik4em2gbm74ji11s0.png)
Your answer is indeed correct!
2)
Now, let's find the equation of the tangent line to the graph at x=3.
Remember what the derivative gives us. The derivative tells us the slope of the tangent line to a graph at a certain point. So, let's substitute 3 into f'(x) to find the slope of our tangent line:
![f'(3)= (3)/(2√(3(3)-5))](https://img.qammunity.org/2021/formulas/mathematics/college/qc5gohsgpe0narp9az9id0ck4z0ke4rq81.png)
Multiply and subtract:
![f'(3)= (3)/(2√(9-5))\\f'(3)= (3)/(2√(4))](https://img.qammunity.org/2021/formulas/mathematics/college/84ggseh80b7g9jokzdu0iwuh90em1onmha.png)
Simplify:
![f'(3)= (3)/(2(2))\\f'(3)= (3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/miznu1loecvfrnesxac9u9k242tobcc2vs.png)
Therefore, the slope of our tangent line is 3/4.
Now, let's find the equation of the line using the point-slope form. So, we need to point at x=3 of the original graph. So, substitute 3 into the original function:
![f(3)=√(3(3)-5)](https://img.qammunity.org/2021/formulas/mathematics/college/natrk2tjoy7bhmjtiv9wtvdleqqrunwkff.png)
Multiply, subtract, and simplify:
![f(3)=√(9-5)\\f(3)=√(4)\\f(3)=2](https://img.qammunity.org/2021/formulas/mathematics/college/5bletrkmu3v1nc66ywsblzudqprjc8b4ga.png)
Therefore, our point is (3,2).
Now, we can use the point-slope form, where:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ks7lzc9jj3emt3ptrdvrvr0uzhz4c0qyo5.png)
Let (3,2) be (x₁, y₁) and substitute 3/4 for m. Therefore:
![y-2=(3)/(4)(x-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9lu1jngu5o7mumhhwkgmvn2fswmxs8659f.png)
Distribute:
![y-2=(3)/(4)x-(9)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q7p6uh1sklpuawqf5ygzeyxyj8ad5xpkl3.png)
Add 2 to both sides:
![y=(3)/(4)x-(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g8bsfwvq8h9xvikcbzo31c3f5ui7xkcwgw.png)
And we're done!