Answer:
61.5752159 units³
Explanation:
The height of a cone can be found using the following formula:
![v=(1)/(3) \pi r^2h](https://img.qammunity.org/2021/formulas/mathematics/high-school/pe5qk3jxw1ivw48d0gd9wkrqj6mvrgl4xe.png)
We know that the height is 14.7 and the radius is 2.
![h=14.7 \\r=2](https://img.qammunity.org/2021/formulas/mathematics/high-school/yzxsbov7fqq7iohj42f8rpljwpcvcy9yfo.png)
Substitute the values into the formula.
![v=(1)/(3) \pi (2)^2(14.7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yr508clbdur6u641ybmyy224wv1fomfu4f.png)
Evaluate the exponent.
⇒ 2²= 2*2 = 4
![v=(1)/(3) \pi (4)(14.7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4jjd4brsknh19td3fz33gak5tigsel2dzt.png)
Multiply 4 and 14.7
![v=(1)/(3) \pi (58.8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xf1eny9t1t04h836v7ddye3kt0yo6vcyqz.png)
Multiply 1/3 and pi.
![v=1.04719755*58.8](https://img.qammunity.org/2021/formulas/mathematics/high-school/7gyfi9p430jya8laqlnjfwortl6rm5iv4l.png)
Multiply the two numbers together.
![v=61.5752159](https://img.qammunity.org/2021/formulas/mathematics/high-school/hdjgp4pec9rcomze0i2srrujdf9358s552.png)
Add appropriate units. Volume is cubic units, and we aren't given units. So, we should use cubic units.
![v=61.5752159 units^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/uzt3d08f30vqaefbbgll1dmuewpgziroc9.png)
The volume of the cone is 61.5752159 cubic units.