140k views
4 votes
Simplify


\sf{ \frac{x - 1}{ {x}^(2) - 3x + 2 } + \frac{x - 2}{ {x}^(2) - 5x + 6} + \frac{x - 5}{ {x}^(2) - 8x + 15}}
Show your work!


2 Answers

6 votes

See the answers in pic .............

Simplify \sf{ \frac{x - 1}{ {x}^(2) - 3x + 2 } + \frac{x - 2}{ {x}^(2) - 5x + 6} + \frac-example-1
User Implmentor
by
4.5k points
2 votes

Answer:

see below

Explanation:


(x-1)/(x^2-3x+2)+ (x-2)/(x^2-5x+6) +(x-5)/(x^2-8x+15)

we need to simplify that


x^2-3x+2=(x-1)(x-2)\\\\x^2-5x+6=(x-2)(x-3)\\\\x^2-8x+15=(x-3)(x-5)

so we can continue


(x-1)/((x-1)(x-2))=(1)/(x-2)\\\\(x-2)/((x-2)(x-3)) =(1)/(x-3)\\\\(x-5)/((x-3)(x-5)) =(1)/(x-3)

and we can put all together


(1)/(x-2)+ (1)/(x-3)+ (1)/(x-3)\\\\(1)/(x-2) +(2)/(x-3)\\\\(x-3)/((x-3)(x-2))+ (2(x-2))/((x-2)(x-3)) \\\\(x-3+2x-4)/((x-3)(x-2))\\\\(3x-7)/(x^2-5x+6)

User Fonti
by
4.6k points