162k views
1 vote
A tornado may be simulated as a two-part circulating flow in cylindrical coordinates, with Vr = Vz = 0. Vtheta = ωr if r ≤ R and Vtheta = ωR2 / r if r ≥ R. Determine the vorticity and the strain rates in each part of the flow.

1 Answer

0 votes

Step-by-step explanation:


$V_(\theta) = \omega r , r \leq R $

=
$\omega (R^2)/(r) $ , r> R


$V_r = V_z = 0$

Inner region vorticity


\Omega _z =(1)/(r).(d)/(dt)(rv_(\theta))


\Omega _z =(1)/(r).(d)/(dt)(r\omega r), (e\omega \\eq 0) (rotational)

Outer region vorticity


\Omega _z =(1)/(r).(d)/(dt)(\omega e^2/r)

= 0 (irrotational)

Strain rate of the inner region


e_(\theta \theta)=(1)/(r).(\delta u_(\theta))/(\delta \theta)+(u_r)/(r)=0


e_(z z)=(\delta u_z)/(\delta z)=0


e_(r r)=(\delta u_r)/(\delta r)=0


e_(r \theta)=e_(\theta r)=(1)/(2)\left \{ r.(\delta)/(\delta r) \left ( (u_(\theta))/(r) \right )+(1)/(r).(\delta u_r)/(\delta \theta)\right \}


e_(r \theta)=e_(\theta r)=(1)/(2)\left \{ r.(\delta)/(\delta r) \left ( (\omega r)/(r)+(1)/(r)(0) \right )\right \}

= 0

Therefore, the strain rate are 0.


e_(r \theta )= e_(\theta r) =(1)/(2)\left \{ r (\delta)/(\delta r) \left ( (\delta u_(\theta))/(\delta r) \right )+(1)/(r)(\delta v_r)/(\delta \theta) \right \}


= (1)/(2)\left \{ r. (\delta)/(\delta r)\left ( (\omega R^2)/(r^2) \right )+(1)/(r). (\delta v_r)/(\delta \theta) \right \}


= (1)/(2)\left \{ v-(2)/(v^3) .\omega R^2 \right \}


= -(\omega R^2)/(r^2)

User ThinkOfaNumber
by
4.2k points