176k views
5 votes
What is the speed of an electron with a de Broglie wavelength of 0.20 nm?

1 Answer

5 votes

Answer:


v = 3.65 * 10^6 m/s

Step-by-step explanation:

Given

de Broglie wavelength = 0.20nm

Required

Determine the speed (v)

The speed is calculated using the following formula;


L = (h)/(mv)

Where


L = Wavelength = 0.2nm


h = Planck's\ constant = 6.63 * 10^(-34)Js


m = Mass\ of\ Electron = 9.11 * 10^(-31) kg

Substitute these values in the above formula


0.2nm = (6.63 * 10^(-34))/(9.11 * 10^(-31) * v)

-----------------------------------------------------

Convert 0.2nm to metre (m)


0.2nm = 0.2 * 10^(-9)m

-----------------------------------------------------


0.2 * 10^(-9) = (6.63 * 10^(-34))/(9.11 * 10^(-31) * v)

Multiply both sides by v


v * 0.2 * 10^(-9) = (6.63 * 10^(-34))/(9.11 * 10^(-31) * v) * v


v * 0.2 * 10^(-9) = (6.63 * 10^(-34))/(9.11 * 10^(-31) )


v * 0.2 * 10^(-9) = (0.73 * 10^(-34))/(10^(-31) )


v * 0.2 * 10^(-9) = 0.73 * 10^(-34) * 10^(31)

Apply law of indices


v * 0.2 * 10^(-9) = 0.73 * 10^(-34 + 31)


v * 0.2 * 10^(-9) = 0.73 * 10^(-3)

Divide both sides by
0.2 * 10^(-9)m


v = (0.73 * 10^(-3) )/( 0.2 * 10^(-9) )


v = (3.65 * 10^(-3) )/(10^(-9) )


v = (3.65 * 10^(-3) )/(10^(-9) )

Apply law of indices


v = 3.65 * 10^(-3) * 10^9


v = 3.65 * 10^(-3+9)


v = 3.65 * 10^6

Hence;

The velocity is


v = 3.65 * 10^6 m/s

User Vladimir Gorovoy
by
4.5k points