228k views
0 votes
The one-to-one functions g and h are defined as follows. g=((-5, 2),( -3, 8), (-1, - 8), (8, 9))

h(x)=3x+2
Find the folowing:
g^-1 (8)=?
h^-1 (x)=?
(h^-1 \circ h)(-3)=?

User Ankur
by
4.5k points

1 Answer

4 votes

Answer:
g^(-1) (8)=-3


h^(-1)(x)=(x-2)/(3)


(h^(-1) \circ h)(-3)=-3.

Explanation:

Given: The one-to-one functions g and h are defined as follows.

g=((-5, 2),( -3, 8), (-1, - 8), (8, 9)) [here each x= input values , y= output values in (x,y)]

h(x)=3x+2

To find:
g^(-1) (8)

As for 8 is a image of -3 ( from point ( -3, 8)).

So,
g^(-1) (8)=-3

To find :
h^(-1) (x)

Let
y = h(x)=3x+2 (i)

Then,


y=3x+2\Rightarrow\ 3x= y-2\\\\\Rightarrow\ x=(y-2)/(3)

Switch
y with
x and
x with
h^(-1) (x), we get


h^(-1)(x)=(x-2)/(3) (ii)

To find :
(h^(-1) \circ h)(-3)

Consider
(h^(-1) \circ h)(-3)=h^(-1) (h(-3))


=h^(-1)(3(-3)+2)\ \ (using\ (i))\\\\=h^(-1)(-9+2)\\\\=h^(-1)(-7)\\\\= (-7-2)/(3)\ \ (using\ (ii))\\\\=(-9)/(3)=-3

So,
(h^(-1) \circ h)(-3)=-3.

User Adam Keenan
by
5.2k points