178k views
2 votes
Find sin 2x, cos 2x, and tan 2x from the given information.
cscx=4,tanx<0.

1 Answer

6 votes

Answer:

Explanation:

Given the expression cosec (x) = 4 and tan(x)< 0

since cosec x = 1/sinx

1/sinx = 4

sinx = 1/4

From SOH, CAH TOA

sinθ = opposite/hypotenuse

from sinx = 1/4

opposite = 1 and hypotenuse = 4

to get the adjacent, we will use the Pythagoras theorem

adj² = 4²-1²

adj² = 16-1

adj ²= 15

adj = √15

cosx = adj/hyp = √15/4

tanx = opposite/adjacent = 1/√15

since tan < 0, then tanx = -1/√15

From double angle formula;

sin2x = 2sinxcosx

sin2x = 2(1/4)(√15/4)

sin2x = 2√15/16

sin2x = √15/8

for cos2x;

cos2x = 1-2sin²x

cos2x = 1-2(1/4)²

cos2x = 1-2(1/16)

cos2x= 1-1/8

cos2x = 7/8

for tan2x;

tan2x = tanx + tanx/1-tan²x

tan2x = 2tanx/1-tan²x

tan2x = 2(-1/√15)/1-(-1/√15

tan2x = (-2/√15)/(1-1/15)

tan2x = (-2/√15)/(14/15)

tan2x = -2/√15 * 15/14

tan2x = -30/14√15

tan2x = -30/7√15

rationalize

tan2x = -30/7√15 * √15/√15

tan2x = -30√15/7*15

tan2x = -2√15/7

User Peter Anselmo
by
4.6k points