88.9k views
1 vote
How do you do this question?

How do you do this question?-example-1

1 Answer

3 votes

Answer:

7√3 + 7π/6 ≈ 15.790

Explanation:

First, find the intersection:

7 cos(2x) = 7 − 7 cos(2x)

14 cos(2x) = 7

cos(2x) = 1/2

2x = π/3

x = π/6

From the graph:

On 0 ≤ x ≤ π/6, 7 cos(2x) > 7 − 7 cos(2x).

On π/6 ≤ x ≤ π/2, 7 − 7 cos(2x) > 7 cos(2x).

So the integral is:


\int\limits^(\pi)/(6) _0 {[7cos(2x)-(7-7cos(2x))]} \, dx + \int\limits^(\pi)/(2) _(\pi)/(6) {[(7-7cos(2x))-7cos(2x)]} \, dx


\int\limits^(\pi)/(6) _0 {[7cos(2x)-7+7cos(2x))]} \, dx + \int\limits^(\pi)/(2) _(\pi)/(6) {[7-7cos(2x)-7cos(2x)]} \, dx


\int\limits^(\pi)/(6) _0 {[14cos(2x)-7]} \, dx + \int\limits^(\pi)/(2) _(\pi)/(6) {[7-14cos(2x)]} \, dx


[7sin(2x)-7x]|^(\pi)/(6) _0 + [7x-7sin(2x)]|^(\pi)/(2) _(\pi)/(6)


[7sin((\pi )/(3) )-(7\pi )/(6) ] - [7sin(0)-0 ] + [(7\pi )/(2) -7sin(\pi )] - [(7\pi )/(6) -7sin((\pi )/(3) )]


7sin((\pi )/(3) )-(7\pi )/(6) + (7\pi )/(2) -7sin(\pi ) - (7\pi )/(6) +7sin((\pi )/(3) )


14sin((\pi )/(3) )-(7\pi )/(3) + (7\pi )/(2)


7√(3) + (7\pi )/(6)

User Lucas Basquerotto
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories