Answer:
![\sin(1395)=-(\sqrt 2)/(2)\\\cos(1395)=(\sqrt 2)/(2)\\\tan(1395)=-1](https://img.qammunity.org/2021/formulas/mathematics/college/fh5fvbovloibyguwu7bpc19ldeq97w4gl3.png)
Explanation:
First, instead of doing 1395, let's find its coterminal angles. We can do so by subtracting 360 until we reach a solvable range. So:
![1395-360=1035](https://img.qammunity.org/2021/formulas/mathematics/college/kx4hp46l9ds7mglm50c8nerf0phfpz0o01.png)
This is still too high, continue to subtract:
![1035-360=675\\675-360=315\\315-360=-45](https://img.qammunity.org/2021/formulas/mathematics/college/c70dixj1h916ofz4ctwaixshomdosephvy.png)
So, instead of 1395, we can use just -45.
So, evaluate each trig function for -45:
1)
![\sin(1395)=\sin(-45)](https://img.qammunity.org/2021/formulas/mathematics/college/y7t2j1uyeak0ypzribnlpssw669v17cnul.png)
Remember that we can move the negative inside of the sine outside. So:
![=-\sin(45)](https://img.qammunity.org/2021/formulas/mathematics/college/igdjmeybe9mmh9b5h5f8shx6casoxb3e0l.png)
Remember the sine of 45 from the unit circle:
![=-(\sqrt2)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/97gert2297gpj2gahslcenkaal8baztzku.png)
2)
![\cos(1395)=\cos(-45)](https://img.qammunity.org/2021/formulas/mathematics/college/2kpk3tikywo2asix275n44cb89gc04nx19.png)
Remember that we can ignore the negative inside of a cosine function. So:
![=\cos(45)](https://img.qammunity.org/2021/formulas/mathematics/college/gfqbtyhtkqsf7ezifdsdb7gzs7sgz5tkje.png)
Evaluate using the unit circle:
![=(\sqrt 2)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/zp4d3qeb4y9d8lk78c7dwowstm5k2gcnjq.png)
Now, remember that tangent is sine over cosine. So: "
![\tan(1395)=\tan(-45)=(\sin(-45))/(\cos(-45))](https://img.qammunity.org/2021/formulas/mathematics/college/up55npg7igfhhilrh3xro526os4j1ipm6s.png)
We already know them. Substitute:
![=(-(\sqrt 2)/(2))/((\sqrt 2)/(2))](https://img.qammunity.org/2021/formulas/mathematics/college/it8fdwylcx41zvd8fves9keoealdm7o0lu.png)
Simplify:
![=-1](https://img.qammunity.org/2021/formulas/mathematics/college/m5d9rj9kb5xsib1ow3tpvh5r2ql12326os.png)
And we're done!