47.2k views
0 votes
Solve using the quadratic formula 2x^2+8x-5=0

1 Answer

2 votes

Explanation:

Hey there!!

Given,


{x}^(2) + 8x - 5 = 0

Comparing it with ax^2+bx+c =0 we get,

a= 1, b= 8, c= -5.

Using formula,


x = \frac{ - b + - \sqrt{ {b}^(2) - 4ac } }{2a}

Keep all values,


x = \frac{ - 8 + - \sqrt{ {8}^(2) - 4 * 1 * ( - 5)} }{2 * 1}


x = ( - 8 + - √(64 + 20) )/(2)


x = ( - 8 + - √(84) )/(2)


x = ( - 8 + - 2 √(21) )/(2)

Taking negative,


x = ( - 8 - 2 √(21) )/(2)


x = ( - 2(4 + √(21)) )/(2)


x = 4 + √(21)

Similarly, taking positive,


x = ( - 8 + 2 √(21) )/(2)


x = ( - 2(4 - √(21) ) )/(2)


x = 4 - √(21)

Therefore, x= (4 + root 21, 4 - root 21).

Hope it helps.....

User Asfar Irshad
by
5.6k points