148k views
4 votes
How do you do this question?

How do you do this question?-example-1
User Aquinas
by
3.9k points

2 Answers

1 vote

Explanation:

∫₁² [e^(1/x⁴) / x⁵] dx

∫₁² [e^(x⁻⁴) x⁻⁵] dx

If u = x⁻⁴, then du = -4x⁻⁵ dx, and -¼ du = x⁻⁵ dx.

∫ e^u (-¼ du)

-¼ ∫ e^u du

-¼ e^u + C

-¼ e^(x⁻⁴) + C

Evaluate between x=1 and x=2.

-¼ e^(2⁻⁴) − -¼ e^(1⁻⁴)

-¼ e^(1/16) + ¼ e

(e − ¹⁶√e) / 4

User Weiweishuo
by
4.0k points
7 votes

Answer:


=\frac{e-\sqrt[16]{e}}{4}

Explanation:

So we have the definite integral:


\int\limits^2_1{\frac{e^{(1)/(x^4)}}{x^5} \, dx

Again, we can use u-substitution. Let u equal 1/x^4. So:


u=(1)/(x^4)=x^(-4)

Find the derivative:


du=-4x^(-5)=-4((1)/(x^5))dx

Divide by -4. So du is:


-(1)/(4)du=(1)/(x^5)dx

Of course, we also need to change our bounds. Substitute 1 and 2 into u:


u=1/(2)^4=1/16\\u=1/(1)^4=1/1=1

Therefore, our new bounds are from 1 to 1/16.

So, make the substitutions:


=-(1)/(4)\int\limits^(1)/(16)_1 {e^u} \, du

The integral of e^u is just e^u. So:


=-(1)/(4)(e^u)

Evaluate for the bounds:


=-(1)/(4)(e^{(1)/(16)}-e^(1))

Simplify:


=-\frac{\sqrt[16]{e}-e}{4}

Distribute:


=\frac{e-\sqrt[16]{e}}{4}

And we're done!

User Igor Shmukler
by
4.7k points