113k views
2 votes
La ecuación de la posición de una esferita está dada por: r(t)=(2.Cos(πt) i-3.Sen(πt) j) (m) ¿Cuál es la velocidad de la esferita a los 0,25 segundos? Calcule la aceleración media en los primeros tres segundos

User Jzhinga
by
4.4k points

1 Answer

3 votes

Answer:

v = (-4.44 i^ + 6.66 j^ ) m/s, a_average =( 0 i^ -2π j^) m/s²

Step-by-step explanation:

The expression left corresponds to an oscillatory movement (MAS), the speed is defined by

v = dr / dt

the function of position

r = 2 cos πt i^ + 3 sin πt j^

let us note that it is a movement in two dimensions

let's perform the derivative

v = -2π sin πt i^ + 3π cos πt j^

we evaluate this expression for t = 0.25 s, remember that the angle is in radians

v = -2π sin (π 0.25) i^ + 3π cos (π 0.25) j^

v = (-4.44 i^ + 6.66 j^ ) m/s

To calculate the mean acceleration we use the expression

a = (
v_(f) - v_(o)) / Δt

indicates that the time is the first 3 s

we look for the initial velocity t = 0 s

v₀ = 0 i ^ + 3π j ^

we look for the fine velocity, t = 3 s

v_f = - 2π sin (π 3) + 3π cos (π 3) j ^

v_f = 0 i ^ - 3π j ^

we calculate the average acceleration

Δt = (3 -0) = 3 s

a_average = (0-0) / 3 i ^ + (-3π - 3π) / 3

a_average = (0 i ^ -2π j ^ ) m/s²

User Valien
by
4.9k points