163k views
4 votes
Integrate the following (3x+4)^2​

User ClaOnline
by
7.6k points

1 Answer

5 votes

Answer:


\displaystyle \int {(3x + 4)^2} \, dx = ((3x + 4)^3)/(9) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {(3x + 4)^2} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 3x + 4
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = 3 \ dx

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(3x + 4)^2} \, dx = (1)/(3)\int {3(3x + 4)^2} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int {(3x + 4)^2} \, dx = (1)/(3)\int {u^2} \, du
  3. [Integral] Reverse Power Rule:
    \displaystyle \int {(3x + 4)^2} \, dx = (1)/(3) \bigg( (u^3)/(3) \bigg) + C
  4. Simplify:
    \displaystyle \int {(3x + 4)^2} \, dx = (u^3)/(9) + C
  5. Back-Substitute:
    \displaystyle \int {(3x + 4)^2} \, dx = ((3x + 4)^3)/(9) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Marixsa
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories