163k views
4 votes
Integrate the following (3x+4)^2​

User ClaOnline
by
7.6k points

1 Answer

5 votes

Answer:


\displaystyle \int {(3x + 4)^2} \, dx = ((3x + 4)^3)/(9) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {(3x + 4)^2} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 3x + 4
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = 3 \ dx

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(3x + 4)^2} \, dx = (1)/(3)\int {3(3x + 4)^2} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int {(3x + 4)^2} \, dx = (1)/(3)\int {u^2} \, du
  3. [Integral] Reverse Power Rule:
    \displaystyle \int {(3x + 4)^2} \, dx = (1)/(3) \bigg( (u^3)/(3) \bigg) + C
  4. Simplify:
    \displaystyle \int {(3x + 4)^2} \, dx = (u^3)/(9) + C
  5. Back-Substitute:
    \displaystyle \int {(3x + 4)^2} \, dx = ((3x + 4)^3)/(9) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Marixsa
by
8.5k points

No related questions found