Answer:
303.8 miles.
Explanation:
Using the given information, draw a figure as shown below.
90 mph for 3 hours = 270 miles
100 mph of 1 hour = 100 miles
In triangle ABC,
![\angle ABC=50^(\circ)+50^(\circ)=100^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ffqqa5lrzw6ynydb3sw1hmh0xnpfrropgz.png)
Using cosine formula,
![AC^2=AB^2+BC^2-2(AB)(BC)\cos B](https://img.qammunity.org/2021/formulas/mathematics/high-school/ehyvwwszmhra6hur0jpx1nwqgswqqocbyl.png)
![AC^2=(270)^2+(100)^2-2(270)(100)\cos (100^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/2bkxh7q71fq4248yuj32toha0jj4pj51de.png)
![AC^2=72900+10000-54000\cdot\left(-0.174\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/oz8347l3kcum2qz42qckwlwr4arky6zwvt.png)
![AC^2=92296](https://img.qammunity.org/2021/formulas/mathematics/high-school/aqwl92pkwygnvdnmuccwwz8jwk0lm4dyjf.png)
Taking square root on both sides.
![AC=√(92296)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kas96jtezmto7g27n4hupjdiq4tq2x7tzn.png)
![AC\approx 303.8](https://img.qammunity.org/2021/formulas/mathematics/high-school/ef5d52xnxshx7k4p5xkdi5uhq693wp0tdk.png)
Therefore, the plane is 303.8 miles from its starting point.