125k views
3 votes
Integration of under root 1 + sin 2 theta​

User Tyshock
by
8.5k points

1 Answer

4 votes

Answer:


\sin \theta - \cos \theta + c

Explanation:


\int √(1 + \sin 2 \theta) \: d \theta \\ formulae \: to \: be \: ued \\ { \sin}^(2) \theta + { \cos}^(2) \theta = 1 \\ \sin2 \theta = 2 \sin \theta \: \cos \theta \\ \\ \therefore \: \int √(1 + \sin 2 \theta) \: d \theta \\ = \int \sqrt{ { \sin}^(2) \theta + { \cos}^(2) \theta + 2 \sin \theta \: \cos \theta} \: d \theta \\ = \int \sqrt{ {(\sin \theta \: + \cos \theta )}^(2) } \: d \theta \\ = \int( \sin \theta + \cos \theta) \: d \theta \\ = \int \sin \theta \: d \theta + \int \cos \theta \: d \theta \\ = - \cos \theta + \sin \theta + c \\ \huge \red{ \boxed{ = \sin \theta - \cos \theta + c}}

User Fartem
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories