Answer:
The resultant of given forces is
.
Step-by-step explanation:
The component method consists in summing each component of known vectors in rectangular form to get the resultant. That is:

Where:
- Resultant, measured in newtons.
- i-th x-Component, measured in newtons.
- i-th y-Component, measured in newtons.
We describe each known vector below:
, South:
![\vec F_(1) = -12\,\hat{i}\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/9w3ebuwvhwk93dozifdjqlkfru9c27n1p8.png)
,
North of west:
![\vec F_(2) = 24\cdot (-\cos 30^(\circ)\,\hat{i}+\sin 30^(\circ)\,\hat{j})\,[N]](https://img.qammunity.org/2021/formulas/physics/college/naqb1b0t0ojbs89z3g8tncmkmsyasl6szt.png)
![\vec F_(2) = -20.785\,\hat{i}+12\,\hat{j}\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/zncen54bajkn0k73c4ujpivnoagiz5560y.png)
,
South of west:
![\vec F_(3) = 15\cdot (-\cos 75^(\circ)\,\hat{i}-\sin 75^(\circ)\,\hat{j})\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/s9z2wfdtnny56ngmqh0ci8cubb3b3bns07.png)
![\vec F_(3) = -3.883\,\hat{i}-14.489\,\hat{j}\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/5r54lw09n18ddtzclistsk3w9pxp9pqg6k.png)
,
South of east:
![\vec F_(4) = 32\cdot (\cos 50^(\circ)\,\hat{i}-\sin 50^(\circ)\,\hat{j})\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/zwvh6ghjfzvj158pbaops3nausb5c7lrpf.png)
![\vec F_(4) = 20.569\,\hat{i} -24.513\,\hat{j}\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/5wth7g5w5eg0hvvad06ykmyy5uu8r2a8u6.png)
We find the resultant by vectorial sum:

![\vec R = (-12-20.785-3.883+20.569)\,\hat{i}+(12-14.489-24.513)\,\hat{j}\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/87uer10ct1w51tmhcaf2ztg7pi2ng67ctt.png)
![\vec R = -16.099\,\hat{i} -27.002\,\hat{j}\,\,[N]](https://img.qammunity.org/2021/formulas/physics/college/q6xakx3rpucz2r7lv91lv63h0590j1xkt6.png)
The resultant of given forces is
.