Answer: Option (d).
Explanation:
it is given that B is between A and C.
Using segment addition property, we get
![AC=AB+BC](https://img.qammunity.org/2021/formulas/mathematics/high-school/p3pf2b1ykja0a4bmfqcp52mtih0584xws4.png)
The given values are AB = 46, BC = 12x, and AC = 142.
Substitute these values in the above equation.
![142=46+12x](https://img.qammunity.org/2021/formulas/mathematics/high-school/8usw3s470d5y12l8ycygvfg2tbqfo1zfgf.png)
![142-46=12x](https://img.qammunity.org/2021/formulas/mathematics/high-school/rydhk669oc5ae5cmlkdtd1srahjj9cg77l.png)
![96=12x](https://img.qammunity.org/2021/formulas/mathematics/high-school/tiafjsremm6nw1g5v1y0n7n72mvvak676t.png)
![(96)/(12)=x](https://img.qammunity.org/2021/formulas/mathematics/high-school/tjxxrjett0zsiful162zqlkis484yg14p5.png)
![8=x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/glepvq55382lw2sofh4j3h9dds8ah27him.png)
![x=8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eubtzoilwcpy5phrh05m4p6y4hzzjhe5fz.png)
Therefore, the correct option is (d).