Answers:
7) Center= (-1,2) Radius=
Equation:
![(x+1)^2+(y-2)^2 = 8](https://img.qammunity.org/2023/formulas/mathematics/college/dpoym46j19ivmzvzae95xziwypsii2q4gb.png)
8) Center= (3,13) Radius= 13 Equation:
![(x-3)^2+(y-13)^2 = 169](https://img.qammunity.org/2023/formulas/mathematics/college/t4nfm9lbq7gu5b956tqbjf5g2cmwayk0do.png)
=========================================================
Step-by-step explanation:
Problem 7
Let's find the distance from (-1,2) to (-3,4)
![(x_1,y_1) = (-1,2) \text{ and } (x_2, y_2) = (-3,4)\\\\d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)\\\\d = √((-1-(-3))^2 + (2-4)^2)\\\\d = √((-1+3)^2 + (2-4)^2)\\\\d = √((2)^2 + (-2)^2)\\\\d = √(4 + 4)\\\\d = √(8)\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/n8eyibdbftitax6avdehw2awyn5oqih588.png)
This is the radius because it stretches from the center to a point on the circle, so
![r = √(8)](https://img.qammunity.org/2023/formulas/mathematics/college/po4y86f3e72kn0c6gqypc3lgibm89105k9.png)
Squaring both sides will get us
![r^2 = 8](https://img.qammunity.org/2023/formulas/mathematics/college/ukl879fco3zllktn5giefyx9iosw8np0fa.png)
One useful template for a circle is the equation
![(x-h)^2+(y-k)^2 = r^2\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/bhdggl4ll5fjdlcznyc867cjbgrgm0mvqn.png)
(h,k) is the center
r is the radius
Let's plug in the given center (h,k) = (-1,2) and the r^2 value we found earlier.
![(x-h)^2+(y-k)^2 = r^2\\\\(x-(-1))^2+(y-2)^2 = 8\\\\(x+1)^2+(y-2)^2 = 8\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/hanlrmvt2xsnrp6f4q85pi1g32njcvrv1p.png)
You can confirm this by using a tool like Desmos. See below.
------------------------------------------------------------------------
Problem 8
The endpoints of the diameter are (-2,1) and (8,25)
The center is the midpoint of these endpoints.
The midpoint of the x coordinates is (-2+8)/2 = 3
The midpoint of the y coordinates is (1+25)/2 = 13
The center is (h,k) = (3,13)
Now find the distance from the center to one of the points on the circle, let's say to (8,25)
![(x_1,y_1) = (3,13) \text{ and } (x_2, y_2) = (8,25)\\\\d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)\\\\d = √((3-8)^2 + (13-25)^2)\\\\d = √((-5)^2 + (-12)^2)\\\\d = √(25 + 144)\\\\d = √(169)\\\\d = 13\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/fawp0pzjgulot29keitk1pp1t0ogq188gx.png)
The radius is exactly 13 units.
So,
![(x-h)^2+(y-k)^2 = r^2\\\\(x-3)^2+(y-13)^2 = 13^2\\\\(x-3)^2+(y-13)^2 = 169\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/8o9ya6ly9r4nc4a1iwk5juxbsjldbnp78k.png)
is the equation of this particular circle.
Visual confirmation is shown below.