191k views
2 votes
The volume of a cube is
27n^(27). What is the length of one side of the cube?

1 Answer

4 votes

Answer:

The answer is


{3n}^(9)

Explanation:

Volume of a cube = l³

where

l is the length of one side

From the question the volume is
{27n}^(27)

The length of one side is


{l}^(3) = {27n}^(27)

Find the cube root of both sides

That's


l = \sqrt[3]{ {27n}^(27) }

Write the equation in exponent form

That's


\sqrt[3]{ {3}^(3) {n}^(27) }

But


\sqrt[3]{x} = {x}^{ (1)/(3) }

So we have


( { {3}^(3) {n}^(27) })^{ (1)/(3) } = {3}^{3 * (1)/(3) } * {n}^{27 * (1)/(3) }

We have


3 * {n}^(9)

So we have the final answer as


{3n}^(9)

Hope this helps you

User Manar
by
6.9k points