Answer:
![y = 4](https://img.qammunity.org/2021/formulas/mathematics/college/cg1pw3ut82ijwocz6e1ru41m29p1o8g646.png)
Explanation:
Given
![ABD = 2y](https://img.qammunity.org/2021/formulas/mathematics/college/mubh62lzosp4fvm3cbyaken19iiihy5ajb.png)
![CBD = 5y - 12](https://img.qammunity.org/2021/formulas/mathematics/college/x7oc23cofp17y5n3b1gjzj0q9lpr9th9dc.png)
Required
Find y ---Missing part of the question
Since BD bisects ABC;
This implies that
![ABD = CBD](https://img.qammunity.org/2021/formulas/mathematics/college/g5mgm29lnludaxi2atqmlva1ey2vzjsgiq.png)
This is so because a bisector splits a segment into equal parts;
Substitute values for ABD and ABC
![2y = 5y - 12](https://img.qammunity.org/2021/formulas/mathematics/college/ba5a7e7k03dsq23hbh65i84jol9lzrawde.png)
Collect Like Terms
![2y - 5y= - 12](https://img.qammunity.org/2021/formulas/mathematics/college/ovc3c0zlo1vh86ey5ot7ad3550biokf7b0.png)
![-3y = -12](https://img.qammunity.org/2021/formulas/mathematics/college/xyuooipjbtlm2kut89g23ua1rs3xeo8y0u.png)
Divide both sides by -3
![y = 4](https://img.qammunity.org/2021/formulas/mathematics/college/cg1pw3ut82ijwocz6e1ru41m29p1o8g646.png)
Hence;
The value of y is 4