21.4k views
15 votes
Find the area of an equilateral triangle with 12-inch altitudes

1 Answer

8 votes


\textit{height of an equilateral triangle}\\\\ h=\cfrac{s√(3)}{2}~~ \begin{cases} s=\stackrel{side's}{length}\\[-0.5em] \hrulefill\\ h=12 \end{cases}\implies 12=\cfrac{s√(3)}{2}\implies 24=s√(3)\implies \cfrac{24}{√(3)}=s \\\\[-0.35em] ~\dotfill


\textit{area of an equilateral triangle}\\\\ A=\cfrac{s^2√(3)}{4}\qquad \qquad A=\cfrac{~~ \left( (24)/(√(3)) \right)^2 √(3)~~}{2}\implies A=\cfrac{~~ (24^2)/(3) √(3)~~}{2} \\\\\\ A=\cfrac{192√(3)}{2}\implies A=96√(3)\implies A\approx 166.28

User Kenny Meyer
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories