220k views
21 votes
Help me pwease? very last minute

Help me pwease? very last minute-example-1
User Gustaf R
by
3.6k points

1 Answer

9 votes

Let
S_k be the k-th partial sum of the infinite series,


\displaystyle S_k = \sum_(n=1)^k \frac23 \left(\frac14\right)^(n-1) = \frac23 \left(1 + \frac14 + \frac1{4^2} + \cdots + \frac1{4^(k-1)}\right)

Multiply both sides by 1/4 :


\displaystyle \frac14 S_k = \frac23 \left(\frac14 + \frac1{4^2} + \frac1{4^3} + \cdots + \frac1{4^k}\right)

Subtract this from
S_k and solve for
S_k :


\displaystyle S_k - \frac14 S_k = \frac23 \left(1 - \frac1{4^k}\right)


\displaystyle \frac34 S_k = \frac23 \left(1 - \frac1{4^k}\right)


\displaystyle S_k = \frac89 \left(1 - \frac1{4^k}\right)

Then as k goes to infinity, the exponential term will converge to zero, and the sum will converge to


\displaystyle S = \lim_(k\to\infty) S_k = \boxed{\frac89}

Generalizing this result, we have for |r| < 1,


\displaystyle \sum_(n=1)^\infty a r^(n-1) = \frac a{1-r}

User Danqi Wang
by
4.1k points