Answer:
and
![2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/diyc1hbb5kwto57k58eoixdf5gqi2y5w6l.png)
Explanation:
The given sphere is
![x^2 + y^2 + z^2 -6x + 2y =-6](https://img.qammunity.org/2021/formulas/mathematics/college/dd7d62rqn2g17kvpdec0f34kg6olvgv8u2.png)
This can be rearranged as
![(x-3)^2 -9+ (y+1)^2 -1 + (z-0)^2=-6](https://img.qammunity.org/2021/formulas/mathematics/college/n22fpzlzdo34e7d0vn4vsjctgpx1ou8kei.png)
![\Rightarrow (x-3)^2 + (y+1)^2 + (z-0)^2=4\\](https://img.qammunity.org/2021/formulas/mathematics/college/6r6smqo3fz6i1fif2ffhjzp42gofjrnpdj.png)
On comparing with the standard equation of a circle
, with center
and radius
.
The center of the given circle is
.
Now, as the perpendicular distance,
, of a point
from a plane
is
.
[ as the given plane is y=2]
![\Rightarrow d=3 \; \cdots (i)](https://img.qammunity.org/2021/formulas/mathematics/college/tjaea05x6kira29itq5p761vp3swcdcq4b.png)
Similarly, the other equation of the circle,
can be rearranged as
![(x-0)^2 + (y+\frac {A}{2})^2 + (z+3)^2=11+\frac {A^2}{4}.](https://img.qammunity.org/2021/formulas/mathematics/college/is3qhr3cgpdutxwrb9bt4806ktg7uo2us1.png)
Here, the center for this circle is
![\left( 0, -\frac {A}{2}, -3\rigfht).](https://img.qammunity.org/2021/formulas/mathematics/college/j59l7la4jw0v2ctaesrf5fwfyn3v8l3967.png)
From the given condition, the distance of the center from the plane
is
.
[from equation (i) ]
![\Rightarrow \left | -\frac {A}{2}-2\right|=3](https://img.qammunity.org/2021/formulas/mathematics/college/rum7h2trgowycsu7b7xmsexq8hks57q6lf.png)
![\Rightarrow \frac {A}{2}+2=\pm 3](https://img.qammunity.org/2021/formulas/mathematics/college/joe9uml9znppzozs5892uwrjhg8j4uv2cf.png)
![\Rightarrow \frac {A}{2}=-2\pm 3](https://img.qammunity.org/2021/formulas/mathematics/college/iqnuhnck9vb74ho7znwvk9d7yq94v1zhzh.png)
and
![2* (-2+3)](https://img.qammunity.org/2021/formulas/mathematics/college/hkqs2cdbg69zzbc3sfaqxss7hooivfus8x.png)
and
.