198k views
3 votes
Findf '(3), where f(t) = u(t) · v(t), u(3) =1, 2, −2, u'(3) =8, 1, 4,andv(t) =t, t2, t3.

User Amarjeet
by
6.7k points

1 Answer

5 votes

Answer:


f'(3)=100

Explanation:

Given:


f(t)=u(t)\cdot v(t)\\u(3)=\left ( 1,2,-2 \right )\\u'\left ( 3 \right )=\left ( 8,1,4 \right )\\v(t)=\left ( t,t^(2),t^(3) \right )

To find:
f'(3)

Solution:


v(t)=\left ( t,t^(2),t^(3) \right )

At
t=3;


v(3)=(3,3^(2),3^(3) )=(3,9,27)

Differentiate with respect to t


v'(t)=\left ( 1,2t,3t^(2) \right )

At
t=3;


v'(3)=\left ( 1,2(3),3(3)^(2) \right )=\left ( 1,6,27 \right )

Using product rule, differentiate
f(t)=u(t)\cdot v(t) with respect to
t


f'(t)=u'(t)\cdot v(t)+u(t)\cdot v'(t)

At
t=3;


f'(3)=u'(3)\cdot v(3)+u(3)\cdot v'(3)\\=\left ( 8,1,4 \right )\cdot \left ( 3,9,27 \right )+\left ( 1,2,-2 \right )\cdot \left ( 1,6,27 \right )\\=24+9+108+1+12-54\\=100

User Teerapap
by
7.3k points