89.3k views
2 votes
Please prove this...​

Please prove this...​-example-1
User Jrarama
by
8.1k points

1 Answer

3 votes

Answer: see proof below

Explanation:

Use the following Sum to Product Identities:

sin (A) - sin (B) = 2 cos (A+B)/2 · sin (A-B)/2

sin (A) + sin (B) = 2 sin (A+B)/2 · cos (A-B)/2

Given: sin Ф = k sin β --> (sin Ф)/(sin β) = k

Proof RHS → LHS


\text{RHS:}\qquad \qquad \qquad (k-1)/(k+1)\tan(\theta+\beta)/(2)


\text{Given:}\qquad \qquad ((\sin \theta)/(\sin \beta)-1)/((\sin \theta)/(\sin \beta)+1)}\cdot \tan(\theta +\beta)/(2)


\text{Simplify:}\qquad \qquad ((\sin \theta)/(\sin \beta)-(\sin \beta)/(\sin \beta))/((\sin \theta)/(\sin \beta)+(\sin \beta)/(\sin \beta))}\cdot \tan(\theta +\beta)/(2)\\\\\\.\qquad \qquad \qquad = (\sin \theta -\sin \beta)/(\sin \theta +\sin \beta)\cdot \tan(\theta +\beta)/(2)


\text{Product to Sum:}\qquad \quad (2\cos (\theta+\beta)/(2)\cdot \sin (\theta-\beta)/(2))/(2\sin (\theta+\beta)/(2)\cdot \cos (\theta-\beta)/(2))\cdot \tan(\theta +\beta)/(2)


\text{Expand:}\qquad \qquad (2\cos (\theta+\beta)/(2)\cdot \sin (\theta-\beta)/(2))/(2\sin (\theta+\beta)/(2)\cdot \cos (\theta-\beta)/(2))\cdot (\sin(\theta +\beta)/(2))/(\cos (\theta +\beta)/(2))


\text{Simplify:}\qquad \qquad \quad \quad (\sin (\theta +\beta)/(2))/(\cos (\theta+ \beta)/(2))\\\\\\.\qquad \qquad \qquad \quad =\tan(\theta +\beta)/(2)


\text{LHS = RHS:}\quad \tan(\theta +\beta)/(2)=\tan(\theta +\beta)/(2)\quad \checkmark

Please prove this...​-example-1
Please prove this...​-example-2
User Fanli
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories