47.6k views
17 votes
An 1800 kg car is driving down the road at 27 m/s. The engine then gives the car a 8.0 x 109 Ns

impulse. How fast is the car going afterwards?

1 Answer

9 votes

Answer:

4,444,471 m/s

Step-by-step explanation:

Use the momentum-impulse equation to find the change in velocity:

I = Δp = mΔv

We know the impulse given as well as the mass, we are trying to find the change in velocity hence the question how fast the car is going afterwards.

8.0*10^9 = 1800Δv

Simply divide 1800 to isolate Δv which gives:

4.4*10^6 = Δv

According to the calculator, the 4 is repetitive across all values so therefore it gives:

4,444,444 m/s = Δv

Now find the final/afterwards velocity:

vi + Δv = vf

27 + 4,444,444 = vf

4,444,471 = vf

The impulse given by the engine is out of this world quite literally.

User Frio
by
5.7k points