Answer:
![\mathtt{\Delta K.E = 10500 \ J}](https://img.qammunity.org/2021/formulas/mathematics/high-school/1tmp1d88w9gvvxwzstiv4kn4i4231rwolh.png)
Explanation:
Given that:
the expression for the change in kinetic energy =
![(1)/(2) * 350 * ( 122 -62)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8eqbuzvaouoxc7ysbwj7gf3ox8ei1lis5.png)
Recall that
Kinetic energy K.E =
![(1)/(2)mv^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/9bac5kaz2wu96ycwjd1adzal11zvt412zk.png)
where,
m = mass of the horse
v = velocity of the horse
The change in kinetic energy between two instant times can be expressed by the relation
![\Delta K.E = K.E_2 - K.E_1](https://img.qammunity.org/2021/formulas/mathematics/high-school/7g68wd9q2260k6hna0proeyod6ul7wktlb.png)
![\Delta K.E =(1)/(2)mv^2_2- (1)/(2)mv^2_1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ccqf9nurgkn3rygd34tonusk4fibkag998.png)
![\Delta K.E =(1)/(2)m(v^2_2-v^2_1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5x122e65apk1r2f3avx5z6viokyyym3iji.png)
where;
m = 350
= 122
= 62
![\Delta K.E =(1)/(2) * 350 * (122-62)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kag5g7cq7jae40nd69qjxo58wsox4ar2wq.png)
![\Delta K.E =(1)/(2) * 350 * (60)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kekw59whpbconytiv8snbsuql3zj2fle6t.png)
![\Delta K.E = 350 * 30](https://img.qammunity.org/2021/formulas/mathematics/high-school/8yi8e2vdfyo9g14irqsia4tk7twu5js5ae.png)
![\mathtt{\Delta K.E = 10500 \ J}](https://img.qammunity.org/2021/formulas/mathematics/high-school/1tmp1d88w9gvvxwzstiv4kn4i4231rwolh.png)