78.4k views
3 votes
Hard question please help. I had to repost because last time I wanted to give more points but I forgot to.

If
(\sin^2 3A)/(\sin^2 A) - (\cos^2 3A)/(\cos^2 A) = 2 find what
\cos2A is.

Best Answer gets the reaming 15!
Have Fun!

User Wavetree
by
4.4k points

1 Answer

5 votes

Use the angle sum identities to expand
\sin(3A) and
\cos(3A):


\sin(3A)=\sin(A+2A)=\sin A\cos(2A)+\cos A\sin(2A)


\cos(3A)=\cos(A+2A)=\cos A\cos(2A)-\sin A\sin(2A)

Use the double angle identity to expand
\sin(2A):


\sin(2A)=2\sin A\cos A

So we have


\sin(3A)=\sin A\cos(2A)+2\cos^2A\sin A


\cos(3A)=\cos A\cos(2A)-2\sin^2A\cos A

Then divide the first expression by
\sin A and the second by
\cos A:


(\sin(3A))/(\sin A)=\cos(2A)+2\cos^2A


(\cos(3A))/(\cos A)=\cos(2A)-2\sin^2A

Squaring these gives


(\sin^2(3A))/(\sin^2A)=(\cos(2A)+2\cos^2A)^2=\cos^2(2A)+4\cos(2A)\cos^2A+4\cos^4A


(\cos^2(3A))/(\cos^2A)=(\cos(2A)-2\sin^2A)^2=\cos^2(2A)-4\cos(2A)\sin^2A+4\sin^4A

Subtract the second expression from the first to get the original equation. The
\cos^2(2A) terms cancel, leaving us with


4\cos(2A)\cos^2A+4\cos^4A+4\cos(2A)\sin^2A-4\sin^4A=2

Now, notice that


4\cos(2A)\cos^2A+4\cos(2A)\sin^2A=4\cos(2A)(\cos^2A+\sin^2A)=4\cos(2A)

and


4\cos^4A-4\sin^4A=4(\cos^2A-\sin^2A)(\cos^2A+\sin^2A)=4\cos(2A)

because
\cos^2A+\sin^2A=1 and
\cos^2A-\sin^2A=\cos(2A).

So we're left with


4\cos(2A)+4\cos(2A)=8\cos(2A)=2\implies\boxed{\cos(2A)=\frac14}

User Midnightnoir
by
4.1k points