Answer:
-27.2 kJ
Step-by-step explanation:
We can use the heat-transfer formula. Recall that:
![\displaystyle q = mC\Delta T](https://img.qammunity.org/2023/formulas/chemistry/high-school/mn71w8i536392g37x371w9c69bx0d0rmwz.png)
Where m is the mass, C is the substance's specific heat, and ΔT is the change in temperature.
Hence substitute:
![\displaystyle \begin{aligned} q & = (100.0\text{ g})\left(\frac{4.18\text{ J}}{\text{g-$^\circ$C}}\right)(20.0\text{ $^\circ$C} - 85.0\text{ $^\circ$C}) \\ \\ & =(100.0\text{ g})\left(\frac{4.18\text{ J}}{\text{g-$^\circ$C}}\right)(-65.0\text{ $^\circ$C}) \\ \\ & = -2.72* 10^4\text{ J} = -27.2\text{ kJ}\end{aligned}](https://img.qammunity.org/2023/formulas/chemistry/high-school/m9yq0xkjyotwow5xb9o6nda86ngtixf11c.png)
Therefore, the cooling of the water released about 27.2 kJ of heat.