127k views
25 votes
Its volume V. If r varies directly as s and inversly as t, r=27, when s=18 and t=2 find:

1. r when t=3 and s=27 2.
2. s when t=2 and r=3 3.
3. t when r=1 and s=6 4.
4. r when s=4 and 1=2 5.
5. s when t=5 and r=6​

User Grtjn
by
3.4k points

2 Answers

13 votes

===================================


\large \sf \underline{Problem:}

Its volume V. If r varies directly as s and inversly as t, r=27, when s=18 and t=2 find:

  • 1.) r when t=3 and s=27
  • 2.) s when t=2 and r=3
  • 3.) t when r=1 and s=6
  • 4.) r when s=4 and 1=2
  • 5.) s when t=5 and r=6

===================================


\large \sf \underline{Answers:}


\qquad \quad \huge \sf{1. r= 27} \\ \\ \qquad \huge \sf{2. s= 2 } \\ \\ \qquad \quad \huge \sf{3. t = 18} \\ \\ \qquad \huge \sf{4. r = 6 } \\ \\ \qquad \quad \huge \sf{5. s = 10}

===================================


\large \sf \underline{Solution:}

Combined Variation:


\large\bold{r=(ks)/(t)}\:\:,\:\:\sf s=(rt)/(k)\:\:,\:\:\sf t=(ks)/(r)\:\:,\:\:\sf k=(rt)/(s)

Given:

  • r = 27
  • s = 18
  • t = 2

Find the constant (k)


\begin{gathered}\begin{aligned}&\sf k=(rt)/(s)\\&\sf k=(27(2))/(18)\\&\sf k=(54)/(18)\\&\sf k=3\end{aligned}\end{gathered}

Use k = 3 to solve the following

Number 1:


\begin{gathered}\begin{aligned}&\sf r=(ks)/(t)\\&\sf r=(\cancel3* 27)/(\cancel3)\\&\underline{\bold{\pmb{r=27}}}\end{aligned}\end{gathered}

Number 2:


\begin{gathered}\begin{aligned}&\sf s=(rt)/(k)\\&\sf s=(\cancel3* 2)/(\cancel3)\\&\underline{\bold{\pmb{s=2}}}\end{aligned}\end{gathered}

Number 3:


\begin{gathered}\begin{aligned}&\sf t=(ks)/(r)\\&\sf t=(3* 6)/(1)\\&\underline{\bold{\pmb{t=18}}}\end{aligned}\end{gathered}

Number 4:


\begin{gathered}\begin{aligned}&\sf r=(ks)/(t)\\&\sf r=(3* \cancel4)/(\cancel2)\\&\sf r=3* 2\\&\underline{\bold{\pmb{r=6}}}\end{aligned}\end{gathered}

Number 5:


\begin{gathered}\begin{aligned}&\sf s=(rt)/(k)\\&\sf s=(\cancel6 * 5)/(\cancel3)\\&\sf s=2* 5\\&\underline{\bold{\pmb{s=10}}}\end{aligned}\end{gathered}

===================================

#LetEarthBreathe

User Granga
by
4.7k points
11 votes


\qquad\qquad\huge\underline{{\sf Answer}}

According to the question :


\qquad \sf  \dashrightarrow \:r \propto s

and


\qquad \sf  \dashrightarrow \:r \propto (1)/(t)

Now, by both equations we can infer that ~


\qquad \sf  \dashrightarrow \:r \propto (s)/(t)

now, assume k to be a proportionality constant


\qquad \sf  \dashrightarrow \:r = k \cdot (s)/(t)

Now, plug in the value of given values, to find value of k ~


\qquad \sf  \dashrightarrow \:27 = (18)/(2) \cdot k


\qquad \sf  \dashrightarrow \:27 = 9{} k


\qquad \sf  \dashrightarrow \:k = 27 / 9


\qquad \sf  \dashrightarrow \:k = 3

Now, let's evaluate the required values ~

# Question 1


\qquad \sf  \dashrightarrow \:r = 3 \cdot (s)/(t)


\qquad \sf  \dashrightarrow \:r = 3 \cdot (27)/( 3)


\qquad \sf  \dashrightarrow \:r = 27

# Question 2


\qquad \sf  \dashrightarrow \:r= 3 \cdot (s)/(t)


\qquad \sf  \dashrightarrow \:3= 3 \cdot (s)/(2)


\qquad \sf  \dashrightarrow \:{s}{} = (3 * 2)/(3)


\qquad \sf  \dashrightarrow \:s = 2

# Question 3


\qquad \sf  \dashrightarrow \:r= 3 \cdot (s)/(t)


\qquad \sf  \dashrightarrow \:1= 3 \cdot (6)/(t)


\qquad \sf  \dashrightarrow \:t = 6\cdot3


\qquad \sf  \dashrightarrow \:t = 18

# Question 4


\qquad \sf  \dashrightarrow \:r = 3 \cdot (s)/(t)


\qquad \sf  \dashrightarrow \:r = 3 \cdot (4)/(2)


\qquad \sf  \dashrightarrow \:r = (12)/(2)


\qquad \sf  \dashrightarrow \:r =6

# Question 5


\qquad \sf  \dashrightarrow \:r = 3 \cdot (s)/(t)


\qquad \sf  \dashrightarrow \:6= 3 \cdot (s)/(5)


\qquad \sf  \dashrightarrow \:s = (6 * 5)/(3)


\qquad \sf  \dashrightarrow \:s = 10

User Dave Durbin
by
4.8k points