Answer:
a)
and
![c=(-1-√(13))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/txvm2s9pfmf3bl047hoclwwkb8p2sx3n17.png)
Explanation:
The idea for the solution of this equation is to find the value of c where both parts of the piecewise-defined function are the same. So we need to take the parts of the function and set them equal to each other, so we get:
![3-x^(2)=x](https://img.qammunity.org/2021/formulas/mathematics/college/prs8bz6laesehg0x6b6o3tfclazb7ec1f9.png)
and then solve for x. We move everything to one side of the equation so we get:
![x^(2)+x-3=0](https://img.qammunity.org/2021/formulas/mathematics/college/yhzi84jsahum2ntnddrfsa2wxqoqiptv3q.png)
and we use the quadratic formula:
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u1vxt8wsdkkq3f86g7h7gc7rjsoip4tbe2.png)
and we substitute:
![x=(-1\pm √((1)^2-4(1)(-3)))/(2(1))](https://img.qammunity.org/2021/formulas/mathematics/college/vntkhguja4u9m8pq6bkicml0efyvr14v6s.png)
and solve
![x=(-1\pm √(1+12))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/2php9jn9te6ez95sge5l4ntogvdpoi5m2a.png)
![x=(-1\pm √(13))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/735sle0t9lss7wkidi7zg88csmmp20rz2m.png)
so our two answers are:
a)
and
![c=(-1-√(13))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/txvm2s9pfmf3bl047hoclwwkb8p2sx3n17.png)