139k views
1 vote
Prove that the EOQ cost function can be rewritten as

g(Q) = h/2 * Q(Q - underroor 2K/h) + underroot 2Kh
Use this to prove without using calculus.

User Gsteinert
by
3.7k points

1 Answer

3 votes

Answer:

the EOQ cost function
\mathbf{g(Q)= (h)/(2 \lambda Q)( Q- \sqrt{(2 \lambda K )/(2)})^2 + \sqrt{(2 h K)/(\lambda)}}

Explanation:

Given that:


g(Q) = (h)/(2 \lambda Q) \begin {pmatrix} Q- \sqrt{(2 K \lambda)/(h)} \end {pmatrix}^2 + \sqrt{(2 Kh)/(\lambda)}

Total cost = Purchase Cost + Ordering Cost + Holding Cost

i.e

T =
P \lambda + h (Q)/(2)+(\lambda K)/(Q)

By differentiating with respect to Q and equating to zero, we have:


0 = 0 +(h)/(2)- (\lambda K)/(Q^2)


Q* = \sqrt{(2 k \lambda)/(h)}

Now;


T = P \lambda + (h)/(2Q)(Q-Q^*)^2 + hQ^*


T = (h)/(2Q)(Q- \sqrt{(2 \lambda K)/(h)})^2 + √(2 hK \lambda ) + P \lambda


((T - P \lambda)/(\lambda )) = (h)/(2 \lambda Q)( Q- \sqrt{(2 \lambda K )/(2)})^2 + \sqrt{(2 h K)/(\lambda)}

Therefore:

the EOQ cost function
\mathbf{g(Q)= (h)/(2 \lambda Q)( Q- \sqrt{(2 \lambda K )/(2)})^2 + \sqrt{(2 h K)/(\lambda)}}

User Chuck Adams
by
5.4k points