Answer:
1) The polynomials
and
are linearly independient, 2) The polynomials
and
are linearly independent, 3) The polynomials
and
are linearly dependent.
Explanation:
A set is linearly independent if and only if the sum of elements satisfy the following conditions:
![\Sigma_(i=0)^(n) \alpha_(i) \cdot u_(i) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/gbf93xbt2gjq0cl84sr151i2x8i70j9uhj.png)
![\alpha_(0) = \alpha_(1) =...=\alpha_(i) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/uac4pg0aovu30lcia3266jxpeaawzzvmfp.png)
1) The set of elements form the following sum:
![\alpha_(1)\cdot p_(1)(t)+\alpha_(2)\cdot p_(2)(t) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/p7sqzlyt0o4n09s2sjliiuvlr4w5ih657g.png)
![\alpha_(1)\cdot (1+t^(2))+\alpha_(2)\cdot (1-t^(2)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/r95bzmoghu4uob5eu7sfmlg3w4lj06slvc.png)
![(\alpha_(1)+\alpha_(2))\cdot (1) +(\alpha_(1)-\alpha_(2))\cdot t^(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/fixwvmcxiwjaxcrjnbxfnqd3qx8gnn97fe.png)
From definition this system of equations must be satisfied:
Eq. 1
Eq. 2
From Eq. 2:
![\alpha_(1) = \alpha_(2)](https://img.qammunity.org/2021/formulas/mathematics/college/72hu4jnq0d81ddx9nalvvqhqs2xio5xcpj.png)
In Eq. 1:
![2\cdot \alpha_(1) =0](https://img.qammunity.org/2021/formulas/mathematics/college/4yzj0yaw1ximqgfxukwydttk36meqmtoeu.png)
![\alpha_(1) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/wgq8yncriv8877rs4yfy7z8npe187szwpr.png)
![\alpha_(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/jy58fp2jcfiex18y16t82poj22d5o7t1zl.png)
The polynomials
and
are linearly independient.
2) The set of elements form the following sum:
![\alpha_(1)\cdot p_(1)(t)+\alpha_(2)\cdot p_(2)(t) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/p7sqzlyt0o4n09s2sjliiuvlr4w5ih657g.png)
![\alpha_(1)\cdot (2\cdot t+t^(2))+\alpha_(2)\cdot (1+t) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/bg037qk6f7qbd8ucqqqs3arapeuu6rqufl.png)
![\alpha_(2)\cdot (1) +(2\cdot \alpha_(1)+\alpha_(2))\cdot t +\alpha_1 \cdot t^(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/cujn5ynppfn4xucc0xbff3e9bryeptsmfx.png)
From definition this system of equations must be satisfied:
![\alpha_(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/jy58fp2jcfiex18y16t82poj22d5o7t1zl.png)
![2\cdot \alpha_(1)+\alpha_(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/ufa3k5xkcbfaq84r6yeoxn6qvk391qb2fs.png)
![\alpha_(1) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/wgq8yncriv8877rs4yfy7z8npe187szwpr.png)
The polynomials
and
are linearly independent.
3) The set of elements form the following sum:
![\alpha_(1)\cdot p_(1)(t)+\alpha_(2)\cdot p_(2)(t) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/p7sqzlyt0o4n09s2sjliiuvlr4w5ih657g.png)
![\alpha_(1)\cdot (2\cdot t-4\cdot t^(2))+\alpha_(2)\cdot (6\cdot t^(2)-3\cdot t) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/g0udyl8q0sluuhlgrcjny5dvaaawwlgu6q.png)
![(2\cdot \alpha_(1)-3\cdot \alpha_(2))\cdot t + (-4\cdot \alpha_(1)+6\cdot \alpha_(2))\cdot t^(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/f0fpai9arih10m5igvv5yolxwqwu8c9jj9.png)
From definition this system of equations must be satisfied:
(Eq. 1)
(Eq. 2)
It is easy to find that each coefficient is multiple of the other one, that is:
(From Eq. 1)
(From Eq. 2)
![\alpha_(1) = (3)/(2)\cdot \alpha_(2)](https://img.qammunity.org/2021/formulas/mathematics/college/iycmlyn5q6mj3ocn9gpsk02q5ysvfx50qh.png)
Which means that polynomials
and
are linearly dependent.