61.9k views
1 vote
If tanA+cotA=2 then find the value of cosA​

1 Answer

3 votes

Answer:

cos A=


(1)/( √(2) )

Explanation:

We know,

cotA=


(1)/( \tan(a) )

Substituting the value of cot A in the given equation, we get


\tan( a) + (1)/( \tan(a) ) = 2


\frac{{ \tan }^(2) a + 1}{ \: \tan(a) } = 2


{ \tan }^(2 \: ) a \: + 1 = 2 tan \: a


{ \tan }^(2) a - 2 \tan \: a + 1 = 0


( \tan \: a - 1) {}^(2 ) = 0


\tan \: a - 1 = √(0)


\tan \: a = 1


\tan \: a \: = \tan \: 45


a = 45


\cos \: a = \cos \: 45


\cos \: a = (1)/( √(2) )

User Karim Samir
by
5.4k points