216k views
0 votes
Find the perimeter of triangle PQR if the vertices are P(3,0), Q(-1,3) and R(11,6).​

User Myyk
by
6.1k points

1 Answer

4 votes

Answer :


\dag\bf\:P(x_1,y_1)=(3,0)


\dag\bf\:Q(x_2,y_2)=(-1,3)


\dag\bf\:R(x_3,y_3)=(11,6)

Distance between P and Q :


\sf\:PQ=√((x_2-x_1)^2+(y_2-y_1)^2)


\sf\:PQ=√((-1-3)^2+(3-0)^2)


\sf\:PQ=√((-4)^2+(3)^2)


\sf\:PQ=√(16+9)


\sf\:PQ=√(25)


\bf\:PQ=5\:unit

Distance between Q and R :


\sf\:QR=√((x_3-x_2)^2+(y_3-y_2)^2)


\sf\:QR=√((11-(-1))^2+(6-3)^2)


\sf\:QR=√((12)^2+(3)^2)


\sf\:QR=√(144+9)


\sf\:QR=√(153)


\bf\:QR=12.37\:unit

Distance between P and R :


\sf\:PR=√((x_1-x_3)^2+(y_1-y_3)^2)


\sf\:PR=√((3-11)^2+(0-6)^2)


\sf\:PR=√((-8)^2+(-6)^2)


\sf\:PR=√(64+36)


\sf\:PR=√(100)


\bf\:PR=10\:unit

Perimeter of Triangle :

➝ perimeter = PQ + QR + PR

➝ perimeter = 5 + 12.37 + 10

Perimeter = 27.37 unit

User Nikolaj Simonsen
by
6.2k points