235k views
1 vote
Integrate the following w.r.t x 1) 2x^2/3.
2) (5-x)^23


User Trann
by
5.4k points

1 Answer

3 votes

Answer:

A)
\int(2x^2)/(3)dx=(2x^3)/(9)+C

B)
\int(5-x)^(23)dx=-((5-x)^(24))/(24)+C

Explanation:

A)

So we have the integral:


\int(2x^2)/(3)dx

First, remove the constant multiple:


=(2)/(3)\int x^2\dx

Use the power rule, where:


\int x^ndx=(x^(n+1))/(x+1)

Therefore:


(2)/(3)\int x^2\dx\\=(2)/(3)((x^(2+1))/(2+1))

Simplify:


=(2)/(3)((x^(3))/(3))

And multiply:


=(2x^3)/(9)

And, finally, plus C:


=(2x^3)/(9)+C

B)

We have the integral:


\int(5-x)^(23)dx

To solve, we can use u-substitute.

Let u equal 5-x. Then:


u=5-x\\du=-1dx

So:


\int(5-x)^(23)dx\\=\int-u^(23)du

Move the negative outside:


=-\int u^(23)du

Power rule:


=-((u^(23+1))/(23+1))

Add:


=-((u^(24))/(24))

Substitute back 5-x:


=-(((5-x)^(24))/(24))

Constant of integration:


=-((5-x)^(24))/(24)+C

And we're done!

User JustHooman
by
6.0k points