141k views
5 votes
Calculus 2 Master needed, evaluate the indefinite integral of:
\int\( (lnx)^2} \, dx So far I had applied the integration by parts and got:
(ln x )^2*x - \int\ x*((lnx)^2/2)} do we do integration by parts again? also, do we simplify the x at my current stage? steps shown would be appreciated

User Fakeleft
by
4.8k points

1 Answer

4 votes

Answer:


\displaystyle \int (\ln(x))^2\, dx=x(\ln(x)^2-2\ln(x)+2)+C

Explanation:

We want to evaluate the integral:


\displaystyle \int\left(\ln x\right)^2 \, dx

We can use Integration by Parts. Rewriting the integral yields:


\displaystyle =\int 1\cdot (\ln(x))^2\, dx

Recall that IBP is given by:


\displaystyle \int u\, dv = uv - \int v \, du

Let u be (ln(x))². And let dv be (1) dx. Therefore:


\displaystyle du = 2\ln x \cdot (1)/(x)\, dx

Simplify:


\displaystyle du=(2\ln(x))/(x)\, dx

And:


dv=(1)dx\Rightarrow v = x

Therefore:


\displaystyle \int (\ln(x))^2\, dx=\underbrace{\ln(x)^2}_(u)\underbrace{x}_(v)-\int\underbrace{x}_(v)\cdot \underbrace{(2\ln(x))/(x)\, dx}_(du)

Simplify:


\displaystyle =x\ln(x)^2-2 \int\ln(x)\, dx

We can perform IBP again. Let u = ln(x) and v = 1. Hence:


\displaystyle du = (1)/(x) \, dx

And:


dv=(1)dx\Rightarrow v = x

Thus:


\displaystyle =x\ln(x)^2-2\left(x\ln(x)-\int (x)(1)/(x)\, dx\right)

Simplify:


\displaystyle =x\ln(x)^2-2\left(x\ln(x)-\int (1)\, dx\right)

Evaluate:


=x\ln(x)^2-2(x\ln(x)-x)+C

Simplify:


\displaystyle =x\ln(x)^2-2x\ln(x)+2x

Factor:


=x(\ln(x)^2-2\ln(x)+2)

Therefore:


\displaystyle \int (\ln(x))^2\, dx=x(\ln(x)^2-2\ln(x)+2)+C

User Inkd
by
5.1k points