Answer:
![k=1/9](https://img.qammunity.org/2021/formulas/mathematics/college/y54gqxug4h4dj9zx8gzz1o887o6j1puqdq.png)
Explanation:
A function is continuous at a point if and only if:
![\lim_(x \to n) f(x)=f(n)](https://img.qammunity.org/2021/formulas/mathematics/college/xmvz4kwom7uh4tkbwsbvan22tuyu9sc7uy.png)
So, we have the piecewise function:
![f(x) = \left\{ \begin{array}{lI} (√(x) -3)/(-9) & \quad0< x <9 \\ 1-kx & \quad x\geq 9 \end{array} \right.$$](https://img.qammunity.org/2021/formulas/mathematics/college/hgimkw8aim6y2tr3wp85nxyy8zrvtb8xog.png)
And we want to find the value of k such that the function is continuous.
First, find the left hand limit of f(x):
![\lim_(x\to9^-) f(x)](https://img.qammunity.org/2021/formulas/mathematics/college/7n3amhdgqny8yrpfd48mw19u3h3drlt2c3.png)
Since we're coming from the left, we'll use the first equation. Thus:
![=\lim_(x\to9^-) (√(x)-3)/(-9)](https://img.qammunity.org/2021/formulas/mathematics/college/ctbp18z3823lye0fu7u98pd21qmpfaan96.png)
Direct substitution:
![=(√(9)-3)/(-9)](https://img.qammunity.org/2021/formulas/mathematics/college/n3qnoc176v1ygcmfs22cfst65m90clkrtr.png)
Simplify:
![=(3-3)/(-9)](https://img.qammunity.org/2021/formulas/mathematics/college/g34e7nghhgmilzkza2mwal3d95yi4vs6ya.png)
Subtract and divide:
![=(0)/(-9)=0](https://img.qammunity.org/2021/formulas/mathematics/college/65vun370hwr7uq0nvgj0gmjzobkheqkmd0.png)
So, what this tells us is that for the function to be continuous, the right hand limit as f(x) approaches 9 from the right must also be equal to 0.
Therefore:
![\lim_(n \to 9^+) 1-kx=0](https://img.qammunity.org/2021/formulas/mathematics/college/qequ4quz4645xgpd8ooni13dnba7dwrgw7.png)
Direct substitution:
![1-9k=0](https://img.qammunity.org/2021/formulas/mathematics/college/ynfcmjgro4zb7ielhepbthywy07hx0wbz1.png)
Subtract 1 from both sides:
![-9k=-1](https://img.qammunity.org/2021/formulas/mathematics/college/kfpqrposum1mm4vfw4oq3kqwi964r9r37h.png)
Divide both sides by -9:
![k=1/9](https://img.qammunity.org/2021/formulas/mathematics/college/y54gqxug4h4dj9zx8gzz1o887o6j1puqdq.png)
Therefore, the value of k is 1/9.
So, our equation in the end is:
![f(x) = \left\{ \begin{array}{lI} (√(x) -3)/(-9) & \quad0< x <9 \\ 1-(1)/(9)x & \quad x\geq 9 \end{array} \right.$$](https://img.qammunity.org/2021/formulas/mathematics/college/8xrc2g02j60xav7auzu880b10gy389y9wd.png)