159k views
3 votes
The base of a parallelogram is thrice its height. If the area is 897 sq.cm. Find the base and the height of parallelogram.

1 Answer

4 votes

Answer:


\boxed{ \bold{ { \sf{height \: = \: 17.29 \: cm}}}}


\boxed{ \bold{ \sf{base = 51.87 \: cm}}}

Explanation:

Let the height of a parallelogram be 'x'

Base of a parallelogram be 3x

Area of a parallelogram ( A ) = 897 cm²

Base ( b ) = ?

Height ( h ) = ?

First, finding the height of a parallelogram ( x )


\bold{ \boxed{ \sf{area \: of \: a \: parallelogram \: = \: base \: * \: height}}}


\dashrightarrow{ \sf897 = 3x * x}


\dashrightarrow{ \sf{897 = 3 {x}^(2) }}


\dashrightarrow{ \sf{3 {x}^(2) = 897}}


\dashrightarrow { \sf{ \frac{3 {x}^(2) }{3} = (897)/(3) }}


\dashrightarrow{ \sf{ {x}^(2) = 299}}


\dashrightarrow{ \sf{x = √(299) }}


\dashrightarrow{ \sf{x = 17.29}}

Height of a parallelogram = 17.29 cm

Finding the base of the parallelogram


\sf{base \: of \ \: a \: parallelogram = 3x}


\sf{base \: of \: a \: parallelogram = \: 3 * 17.29}


\sf{base \: of \: a \: parallelogram = 51.87 \: cm}

Base of a parallelogram = 51.87 cm

Hope I helped!

Best regards! :D

User Aerdman
by
4.9k points