19.1k views
1 vote
Please someone help me... i need full answer ​

Please someone help me... i need full answer ​-example-1
User Rushane
by
8.5k points

1 Answer

5 votes

Answer: see proof below

Explanation:

Use the following Sum to Product Identities:


\sin x-\sin y=2\cos\bigg((x+y)/(2)\bigg)\sin\bigg((x-y)/(2)\bigg)\\\\\\\cos x-\cos y=2\cos\bigg((x+y)/(2)\bigg)\cos\bigg((x-y)/(2)\bigg)

Proof LHS → RHS


\text{LHS:}\qquad \qquad \qquad \qquad (\sin 2A+\sin 5A-\sin A)/(\cos A+\cos 2A+\cos 5A)


\text{Regroup:}\qquad \qquad \qquad (\sin 2A+(\sin 5A-\sin A))/(\cos 2A+(\cos 5A+\cos A))


\text{Sum to Product:}\qquad (\sin 2A+2\cos\bigg((5A+A)/(2)\bigg)\sin\bigg((5A-A)/(2)\bigg))/(\cos2A+\cos\bigg((5A+A)/(2)\bigg)\cos\bigg((5A-A)/(2)\bigg))


\text{Simplify:}\qquad \qquad \qquad (\sin 2A+2\cos 3A\sin 2A)/(\cos 2A+2\cos 3A\cos 2A)


\text{Factor:}\qquad \qquad \qquad (\sin 2A(1+2\cos 3A))/(\cos 2A(1+2\cos 3A))


\text{Simplify:}\qquad \qquad \qquad (\sin 2A)/(\cos 2A)\\\\.\qquad \qquad \qquad \qquad =\tan 2A

LHS = RHS: tan 2A = tan 2A
\checkmark

Please someone help me... i need full answer ​-example-1
Please someone help me... i need full answer ​-example-2
User BigHandsome
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories