Answer:
1.
Step-by-step explanation:
Hello,
In this case, for the given reaction we first assign the oxidation state for each species:
![Sn^0 + H^+N^(5+)O^(-2)_3 \rightarrow Sn^(4+)O_2 + N^(4+)O^(2-)_2 + H^+_2O^-](https://img.qammunity.org/2021/formulas/chemistry/college/i3satvoqqu03ddc6i41scbxx3o1c2ret28.png)
Whereas the half reactions are:
![Sn^0+2H_2O \rightarrow Sn^(4+)O_2 +4H^++4e^-\\\\H^++H^+N^(5+)O^(-2)_3 +1e^-\rightarrow N^(4+)O^(2-)_2+H_2O](https://img.qammunity.org/2021/formulas/chemistry/college/gdjj33753l004d94x1ng1mynsssbll405z.png)
Next, we exchange the transferred electrons:
![1*(Sn^0+2H_2O \rightarrow Sn^(4+)O_2 +4H^++4e^-)\\\\4* (H^++H^+N^(5+)O^(-2)_3 +1e^-\rightarrow N^(4+)O^(2-)_2+H_2O)\\\\\\Sn^0+2H_2O \rightarrow Sn^(4+)O_2 +4H^++4e^-\\\\4H^++4H^+N^(5+)O^(-2)_3 +4e^-\rightarrow 4N^(4+)O^(2-)_2+4H_2O](https://img.qammunity.org/2021/formulas/chemistry/college/ahf0dgk93as3mn11accz4yava8dcjfbfop.png)
Afterwards, we add them to obtain:
![Sn^0+2H_2O+4H^++4H^+N^(5+)O^(-2)_3 \rightarrow Sn^(4+)O_2 +4H^++4N^(4+)O^(2-)_2+4H_2O](https://img.qammunity.org/2021/formulas/chemistry/college/fgomt0can5fhuenukyfiexnrmfja45dc6t.png)
By adding and subtracting common terms we obtain:
![Sn^0+4H^+N^(5+)O^(-2)_3 \rightarrow Sn^(4+)O_2 +4N^(4+)O^(2-)_2+2H_2O](https://img.qammunity.org/2021/formulas/chemistry/college/a63k8jrvphkz5vnes262fu6ofo0r3nzg3g.png)
Finally, by removing the oxidation states we have:
![Sn + 4HNO_3 \rightarrow SnO_2 + 4NO_2 + 2H_2O](https://img.qammunity.org/2021/formulas/chemistry/college/mt9z53oz2r8f17o4oxsylcxu76ewtgor2d.png)
Therefore, the smallest whole-number coefficient for Sn is 1.
Regards.