Answer:
![Ksp=2.2x10^(-32)](https://img.qammunity.org/2021/formulas/chemistry/college/5rlakcxn65gstm34ht7w8f6wwf1la7qqku.png)
Step-by-step explanation:
Hello,
In this case, since the dissociation of aluminum hydroxide is:
![Al(OH)_3(s)\rightleftharpoons Al^(3+)+3OH^-](https://img.qammunity.org/2021/formulas/chemistry/college/p19rv639a6syrlnriscfrlyc90jejxtktk.png)
The equilibrium expression is:
![Ksp=[Al^(3+)][OH^-]^3](https://img.qammunity.org/2021/formulas/chemistry/college/6vvtkrvb88eblq9uaj1m88idjn3kqko9n0.png)
Thus, given the concentration of hydroxyl ions in the solution, and the 3:1 mole ratio with the aluminum ions, the concentration of those turn out:
![[Al^(3+)]=1.6x10^(-8)(molOH^-)/(L)*(1molAl^(3+))/(3molOH^-) =5.3x10^(-9)M](https://img.qammunity.org/2021/formulas/chemistry/college/p17g3365lltppcckn7iw3j6kok1jqsfdmb.png)
Therefore, the solubility product, Ksp turns out:
![Ksp=(5.3x10^(-9)M)[1.6x10^(-8)M]^3\\\\Ksp=2.2x10^(-32)](https://img.qammunity.org/2021/formulas/chemistry/college/ntzcsuujno34d7xp6xcd00ln4d9kymbk8u.png)
Regards.