Answer:
P₄(x) = ln3 + 1/3 (x-3) - 1/9*2! (x-3)² + 2/27*3! (x-3)³ - 2/27*4! (x - 3)⁴
Explanation:
Given:
f(x) = ln(x)
n = 4
c = 3
To find:
nth Taylor polynomial for the function, centered at c
Solution:
The Taylor series for f(x) = ln x centered at 3 is:

Since c = 3 So,

Now
f(3) = ln 3
f'(x) = 1/x ⇒ f'(3) = 1/3
f''(x) = -1/x² ⇒ f''(3) = -1/3² = -1/9
f'''(x) = 2/x³ ⇒ f'''(3) = 2/3³ = 2/27
f
(x) = -6/x⁴ ⇒ f
(3) = -6/3⁴ = -6/81 = - 2/27
So Taylor polynomial for n=4 is:
P₄(x) = ln3 + 1/3 (x-3) - 1/9*2! (x-3)² + 2/27*3! (x-3)³ - 2/27*4! (x - 3)⁴