Answer:
P₄(x) = ln3 + 1/3 (x-3) - 1/9*2! (x-3)² + 2/27*3! (x-3)³ - 2/27*4! (x - 3)⁴
Explanation:
Given:
f(x) = ln(x)
n = 4
c = 3
To find:
nth Taylor polynomial for the function, centered at c
Solution:
The Taylor series for f(x) = ln x centered at 3 is:
![P_(n)(x) = f(c) + (f'(c))/(1!)(x-c)+(f''(c))/(2!)(x-c)^(2) +(f'''(c))/(3!)(x-c)^(3)+...+(f^(n) (c))/(n!)(x-c)^(n)](https://img.qammunity.org/2021/formulas/mathematics/college/gyaoi4hfa73zrxgyc2qoxu1cvnqpzncv4f.png)
Since c = 3 So,
![P_(4)(x) = f(3) + (f'(3))/(1!)(x-3)+(f''(3))/(2!)(x-3)^(2) +(f'''(3))/(3!)(x-3)^(3)+...+(f^(n) (3))/(n!)(x-3)^(n)](https://img.qammunity.org/2021/formulas/mathematics/college/xtbm03u7vwm4qgqmyz3wic9idut6igj7x3.png)
Now
f(3) = ln 3
f'(x) = 1/x ⇒ f'(3) = 1/3
f''(x) = -1/x² ⇒ f''(3) = -1/3² = -1/9
f'''(x) = 2/x³ ⇒ f'''(3) = 2/3³ = 2/27
f
(x) = -6/x⁴ ⇒ f
(3) = -6/3⁴ = -6/81 = - 2/27
So Taylor polynomial for n=4 is:
P₄(x) = ln3 + 1/3 (x-3) - 1/9*2! (x-3)² + 2/27*3! (x-3)³ - 2/27*4! (x - 3)⁴