74.7k views
2 votes
Given the points C(-1,-5) and D(-7,11) find the coordinates of point E on CD such that the ratio of CE to ED is 5:3.

((Yes im this stupid, please help-))

Given the points C(-1,-5) and D(-7,11) find the coordinates of point E on CD such-example-1

1 Answer

0 votes

Answer:

The coordinates of point E on CD are
\left(-(19)/(4),5 \right).

Explanation:

Let be
C = (-1,-5),
D = (-7,11) and
(CE)/(ED) = (5)/(3). The given ratio can be translated vectorially into this:


\overrightarrow {CE} = (5)/(3) \cdot \overrightarrow{ED}

And let consider that each point is a vector with respect to origin:


\vec C = (-1, -5) and
\vec {D} = (-7,11)

Then,


\vec E -\vec C = (5)/(3)\cdot (\vec D -\vec E)


\vec E +(5)/(3)\cdot \vec E = (5)/(3)\cdot \vec D + \vec C


(8)/(3)\cdot \vec E = (5)/(3)\cdot \vec D + \vec C


\vec E = (5)/(8)\cdot \vec D + (3)/(8)\cdot \vec C


\vec E = (5)/(8)\cdot (-7,11)+(3)/(8)\cdot (-1,-5)


\vec E = \left(-(35)/(8),(55)/(8) \right)+\left(-(3)/(8),-(15)/(8) \right)


\vec E = \left(-(35)/(8)-(3)/(8),(55)/(8)-(15)/(8) \right)


\vec{E} = \left(-(19)/(4), 5\right)

The coordinates of point E on CD are
\left(-(19)/(4),5 \right).

User Sonaryr
by
7.7k points