223k views
6 votes
The fish population in a certain part of the ocean (in thousands of fish) as a function of the water's temperature (in degrees celsius) is modeled by:

P(x)=-2(x-9)^2+200
what temperature will result in the maximum number of fish?

The fish population in a certain part of the ocean (in thousands of fish) as a function-example-1
User Llaffin
by
8.5k points

2 Answers

8 votes
  • y=-2(x-9)²+200

Compare to vertex form of parabola y=a(x-h)²+k

Vertex:-

  • (h,k)=(9,200)

As a is negative vertex is maximum

Max temperature=9°C

User Aman Adhikari
by
8.4k points
11 votes

Answer:

9 °C

Explanation:

Given function:


P(x)=-2(x-9)^2+200

The given function is a quadratic in vertex form.

Vertex form:
y=a(x-h)^2+k (where (h, k) is the vertex)

Therefore, the vertex is (9, 200)

The vertex is the minimum point for a parabola that opens upward.

The vertex is the maximum point for a parabola that opens downward.

The given function has a negative leading coefficient, therefore is opens downwards, and the vertex is the maximum point.

Therefore, the temperature (x-value) that will give the maximum number of fish (y-value) is the x-value of the vertex: 9 °C

User SSG
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories