Answer:
1 C JUICE , 1 C MILK , 1.5 SLICE OF BREAD and 1.5 C CEREAL should each be served to obtain the desired amounts.
Explanation:
Given that;
protein carbohydrate fat calories
1 cup juice 2 24 0 110
1 cup cereal 8 4 8 120
1 slice bread 2 10 6 100
1 cup milk 10 13 0 85
Now let number of cups of juice, cereal , bread milk be
j, c, b and m respectively
from the table and information from the given
protein
2j + 8c + 2b + 10m = 27 ------------------equ 1
carbohydrate
24j + 4c + 10b + 13m = 58 ---------------equ 2
fat
8c + 6b = 21 ----------------------------------equ 3
calories
110j + 120c + 100b + 85m = 525 ------- equ 4
Now
equ 1 × 12 - equ 11
⇒(24j + 96c + 24b + 120m = 324) - (24j + 4c + 10b + 13m = 58)
= 92j + 14b + 107m = 266 -----------------equ 5
also
equ 1 × 55 - equ 4
( 110j + 440c + 110b + 550m = 1485) - ( 110j + 120c + 100b + 85m = 525 )
320c + 10b + 465m = 960
divide through by 5
64c + 2b + 93m = 192 ----------------------- equ 6
then
equ(5)×93 - equ(6)×107
(8556j + 1302b + 9951m = 24738) - (6848j + 214b + 9951m = 20544)
1708j + 1088b = 4194
divide through by 2
854j + 544b = 2097 --------------------------- equ 7
Now
equ(3)×854 - equ(7)×8
(6832c + 5124b = 17934) - ( 6832c + 4352b = 16776)
772b = 1158
b = 1158 / 772
b = 1.5
now put (b=1.5) in equation 3
8c + 6(1.5) = 21
8c 9 = 21
8c = 21 - 9
8c = 12
c = 12/8
c = 1.5
now put (b=1.5) and (c=1.5) in equation 6
64(1.5) + 2(1.5) + 93m = 192
96 + 3 + 93m = 192
93m = 192 - 99
93m = 93
m = 93/93
m = 1
now put (b=1.5), (c=1.5) and (m=1) in equation 1
2j + 8(1.5) + 2(1.5) + 10(1) = 27
2j + 12 + 3 + 10 = 27
2j + 25 = 27
2j = 27 -25
2j = 2
j = 2/2
j = 1
Therefore 1 C JUICE , 1 C MILK , 1.5 SLICE OF BREAD and 1.5 C CEREAL should each be served to obtain the desired amounts.