94.6k views
14 votes
Find the Value of k that will make the function f(x) continuous everywhere.​

Find the Value of k that will make the function f(x) continuous everywhere.​-example-1

1 Answer

2 votes

well, if that function f(x) were to be continuos on all subfunctions, that means that whatever value 7x + k has when x = 2, meets or matches the value that kx² - 6 has when x = 2 as well, so then 7x + k = kx² - 6 when f(2)


f(x)= \begin{cases} 7x+k,&x\leqslant 2\\ kx^2-6&x > 2 \end{cases}\qquad \qquad f(2)= \begin{cases} 7(2)+k,&x\leqslant 2\\ k(2)^2-6&x > 2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 7(2)+k~~ = ~~k(2)^2-6\implies 14+k~~ = ~~4k-6 \\\\\\ 14~~ = ~~3k-6\implies 20~~ = ~~3k\implies \cfrac{20}{3}=k

User FraXis
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories