115k views
2 votes
Solve with interval notation Solve: 5 | x − 2 | + 4 > 8

User Verric
by
4.2k points

1 Answer

0 votes

Answer:

x<6/5, x>14/5

Explanation:

Steps

$5\left|x-2\right|+4>8$

$\mathrm{Subtract\:}4\mathrm{\:from\:both\:sides}$

$5\left|x-2\right|+4-4>8-4$

$\mathrm{Simplify}$

$5\left|x-2\right|>4$

$\mathrm{Divide\:both\:sides\:by\:}5$

$\fracx-2\right{5}>\frac{4}{5}$

$\mathrm{Simplify}$

$\left|x-2\right|>\frac{4}{5}$

$\mathrm{Apply\:absolute\:rule}:\quad\mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad\mathrm{or}\quad\:u\:>\:a$

$x-2<-\frac{4}{5}\quad\mathrm{or}\quad\:x-2>\frac{4}{5}$

Show Steps

$x-2<-\frac{4}{5}\quad:\quad x<\frac{6}{5}$

Show Steps

$x-2>\frac{4}{5}\quad:\quad x>\frac{14}{5}$

$\mathrm{Combine\:the\:intervals}$

$x<\frac{6}{5}\quad\mathrm{or}\quad\:x>\frac{14}{5}$

User Abdan Syakuro
by
4.5k points