Answer:
The points are
![t_1 = 0.7433](https://img.qammunity.org/2021/formulas/mathematics/college/xovq2laautbqfami86oysqqzp10rmwh3ys.png)
![t_2 = -0.299](https://img.qammunity.org/2021/formulas/mathematics/college/a3luhlqx5k6pdpjqhwfe6tb02tgq3pqb9l.png)
Explanation:
From the question we are told that
The first equation is
![x(t) = 3t^3 -2t^2-2t -4](https://img.qammunity.org/2021/formulas/mathematics/college/p0jhjmqc6lpxgmoi58vi31ta22vugof94d.png)
The second equation is
![y(t) = 3t^2 -2t -2](https://img.qammunity.org/2021/formulas/mathematics/college/zvo9yvgfxey6peokihyd1fay4zemjr5u26.png)
Now differentiating the first and second equation
![(dx(t))/(dt) = 9t^2 -4t-2](https://img.qammunity.org/2021/formulas/mathematics/college/3580fcnc42yxowcmgcepj57ly07l6hkadf.png)
and
![(dy(t))/(dt) = 6t-2](https://img.qammunity.org/2021/formulas/mathematics/college/8wq6n22dt8mueepraubyq8i7y2999qn9bc.png)
Now
![(dy(t))/(dx(t)) = ((dy(t))/(dt) )/((dx(t))/(dt) ) = (9t^2 -4t-2)/(6t-2)](https://img.qammunity.org/2021/formulas/mathematics/college/e9vr1mj4r8ercgevldkcl0c4c7bgni6kqp.png)
at critical point
![(dy(t))/(dx(t)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/iqaoe07ur8o3w3k3sktvvi0kvwn4vnf9zc.png)
=> \frac{9t^2 -4t-2}{6t-2}=0[/tex]
=>
![9t^2 - 4t-2 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/9tl5vvlph6fyvaketqyujrm5js53g6uudo.png)
solving using quadratic formula we have that
![t_1 = 0.7433](https://img.qammunity.org/2021/formulas/mathematics/college/xovq2laautbqfami86oysqqzp10rmwh3ys.png)
and
![t_2 = -0.299](https://img.qammunity.org/2021/formulas/mathematics/college/a3luhlqx5k6pdpjqhwfe6tb02tgq3pqb9l.png)