148k views
4 votes
(iii) sin (90° - A) cos (90° - A)=tanA/
1+tan²A​

User Ivan Bara
by
4.1k points

1 Answer

4 votes

Answer:

See below

Explanation:


A=\theta


$\sin(90\º - \theta) \cos(90\º - \theta) = ( \tan(\theta))/(1+ \tan^2(\theta))$

According to cofunctions identities:


\boxed{\sin(90\º - \theta)=\cos(\theta)}


\boxed{\cos(90\º - \theta)=\sin(\theta)}


$\cos(\theta) \sin(\theta) = ( \tan(\theta))/(1+ \tan^2(\theta))$

Once


$\tan(\theta)=(\sin(\theta))/(\cos(\theta)) $


$\cos(\theta) \sin(\theta) = ( (\sin(\theta))/(\cos(\theta)))/(1+ (\sin^2(\theta))/(\cos^2(\theta)))$

Take


$1+(\sin^2(\theta))/(\cos^2(\theta))}=(\sin^2(\theta) + \cos^2(\theta))/(\cos^2(\theta)) $


$\cos(\theta) \sin(\theta) = ( (\sin(\theta))/(\cos(\theta)))/((\sin^2(\theta) + \cos^2(\theta))/(\cos^2(\theta)) )}$


$\cos(\theta) \sin(\theta) = (\sin(\theta))/(\cos(\theta)) \cdot (\cos^2(\theta))/(\sin^2(\theta) + \cos^2(\theta)) }$


$\cos(\theta) \sin(\theta) = (\sin(\theta))/(\cos(\theta)) \cdot (\cos^2(\theta))/(\sin^2(\theta) + \cos^2(\theta)) }$


$\cos(\theta) \sin(\theta) = (\sin(\theta)\cos(\theta))/(\sin^2(\theta) + \cos^2(\theta)) }$

Once


\boxed{\sin^2(\theta) + \cos^2(\theta)=1}


$\cos(\theta) \sin(\theta) = (\sin(\theta)\cos(\theta))/(1 )$


$\cos(\theta) \sin(\theta) = \sin(\theta)\cos(\theta)$


$\therefore \sin(90\º - \theta) \cos(90\º - \theta) = ( \tan(\theta))/(1+ \tan^2(\theta))$

User Dan Lorenc
by
4.1k points